
Nanostructured Carbon Electron Emitters and Their Applications
Carbon forms a variety of allotropes due to the diverse hybridization of s- and p-electron orbitals, including the time-honored graphite and diamond as well as new forms such as C60 fullerene, nanotubes, graphene, and carbyne. The new family of carbon isotopes—fullerene, nanotubes, graphene, and carbyne—is called “nanostructured carbon” or “nanocarbon.” These isotopes exhibit extreme properties su...
Carbon forms a variety of allotropes due to the diverse hybridization of s- and p-electron orbitals, including the time-honored graphite and diamond as well as new forms such as C60 fullerene, nanotubes, graphene, and carbyne. The new family of carbon isotopes—fullerene, nanotubes, graphene, and carbyne—is called “nanostructured carbon” or “nanocarbon.” These isotopes exhibit extreme properties su...