
How Does One Cut a Triangle?
This second edition of Alexander Soifer’s How Does One Cut a Triangle? demonstrates how different areas of mathematics can be juxtaposed in the solution of a given problem. The author employs geometry, algebra, trigonometry, linear algebra, and rings to develop a miniature model of mathematical research.
How Does One Cut a Triangle? contains dozens of proofs and counterexamples to a variety of prob...
This second edition of Alexander Soifer’s How Does One Cut a Triangle? demonstrates how different areas of mathematics can be juxtaposed in the solution of a given problem. The author employs geometry, algebra, trigonometry, linear algebra, and rings to develop a miniature model of mathematical research.
How Does One Cut a Triangle? contains dozens of proofs and counterexamples to a variety of prob...