
Spread of Almost Simple Classical Groups
Available
This monograph studies generating sets of almost simple classical groups, by bounding the spread of these groups.
Guralnick and Kantor resolved a 1962 question of Steinberg by proving that in a finite simple group, every nontrivial element belongs to a generating pair. Groups with this property are said to be 3/2-generated. Breuer, Guralnick and Kantor conjectured that a finite group is 3/2-gene...
Read more
E-book
pdf
Price
49.99 £
This monograph studies generating sets of almost simple classical groups, by bounding the spread of these groups.
Guralnick and Kantor resolved a 1962 question of Steinberg by proving that in a finite simple group, every nontrivial element belongs to a generating pair. Groups with this property are said to be 3/2-generated. Breuer, Guralnick and Kantor conjectured that a finite group is 3/2-gene...
Read more
Follow the Author