This book addresses the well-known capability and flexibility of classical and constructive semigroups (inherited from algebraic structures), to model, solve problems in extremely diverse situations, and develop interesting new algebraic ideas with many applications and connections to other areas of mathematics (logic, biomathematics, analysis, geometry, etc.
This book addresses the well-known capability and flexibility of classical and constructive semigroups (inherited from algebraic structures), to model, solve problems in extremely diverse situations, and develop interesting new algebraic ideas with many applications and connections to other areas of mathematics (logic, biomathematics, analysis, geometry, etc.
A groundbreaking theory has emerged for spectral analysis of pseudo-Riemannian locally symmetric spaces, extending beyond the traditional Riemannian framework.
Diagrammatic Algebra provides the intuition and tools necessary to address some of the key questions in modern representation theory, chief among them Lusztig’s conjecture.
Since its publication in 1967, Bertram Huppert’s influential Endliche Gruppen I has remained a standard reference on group theory, with its clear, precise and complete exposition.
This proceedings volume, the sixth in a series from the Combinatorial and Additive Number Theory (CANT) conferences, is based on talks from the 20th and 21st annual workshops, held in New York in 2022 (virtual) and 2023 (hybrid) respectively.
This proceedings volume, the sixth in a series from the Combinatorial and Additive Number Theory (CANT) conferences, is based on talks from the 20th and 21st annual workshops, held in New York in 2022 (virtual) and 2023 (hybrid) respectively.
This book is intended mainly as a teaching tool directed toward those who desire a deeper understanding of group theory in terms of examples applicable to the physical world and/or of the physical world in terms of the symmetry properties which can best be formulated in terms of group theory.
By combinatorial semigroups, we mean a general term of concepts, facts and methods which are produced in investigating of algebraic and combinatorial properties, constructions, classifications and interrelations of formal languages and automata, codes, finite and infinite words by using semigroup theory and combinatorial analysis.
By combinatorial semigroups, we mean a general term of concepts, facts and methods which are produced in investigating of algebraic and combinatorial properties, constructions, classifications and interrelations of formal languages and automata, codes, finite and infinite words by using semigroup theory and combinatorial analysis.
Most of the existing monographs on generalized inverses are based on linear algebra tools and geometric methods of Banach (Hilbert) spaces to introduce generalized inverses of complex matrices and operators and their related applications, or focus on generalized inverses of matrices over special rings like division rings and integral domains, and does not include the results in general algebraic structures such as arbitrary rings, semigroups and categories, which are precisely the most general cases.
Most of the existing monographs on generalized inverses are based on linear algebra tools and geometric methods of Banach (Hilbert) spaces to introduce generalized inverses of complex matrices and operators and their related applications, or focus on generalized inverses of matrices over special rings like division rings and integral domains, and does not include the results in general algebraic structures such as arbitrary rings, semigroups and categories, which are precisely the most general cases.
This book contains chapters on a range of topics in mathematics and mathematical physics, including semigroups, algebras, operator theory and quantum mechanics, most of them have been presented at the International Conference on Semigroup, Algebras, and Operator Theory (ICSAOT-22), held at Cochin, Kerala, India, from 28-31 March 2022.
This book contains chapters on a range of topics in mathematics and mathematical physics, including semigroups, algebras, operator theory and quantum mechanics, most of them have been presented at the International Conference on Semigroup, Algebras, and Operator Theory (ICSAOT-22), held at Cochin, Kerala, India, from 28-31 March 2022.
The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell-Tornheim multiple zeta-functions, and Euler-Zagier multiple zeta-functions.
This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup.
This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup.
This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms "e;up to uniformly bounded error"e;.