The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations.
Because the theory of equations with delay terms occurs in a variety of contexts, it is important to provide a framework, whenever possible, to handle as many cases as possible simultaneously so as to bring out a better insight and understanding of the subtle differences of the various equations with delays.
The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday.
At the heart of the topology of global optimization lies Morse Theory: The study of the behaviour of lower level sets of functions as the level varies.
Inverse scattering theory is an important area of applied mathematics due to its central role in such areas as medical imaging , nondestructive testing and geophysical exploration.
This text provides a masterful and systematic treatment of all the basic analytic and geometric aspects of Bergman's classic theory of the kernel and its invariance properties.
Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments.
This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces.
Focusing on research surrounding aspects of insufficiently studied problems of estimation and optimal control of random fields, this book exposes some important aspects of those fields for systems modeled by stochastic partial differential equations.
This book is an introduction to a comprehensive and unified dynamic transition theory for dissipative systems and to applications of the theory to a range of problems in the nonlinear sciences.
The volume contains carefully selected papers presented at the International Conference on Differential & Difference Equations and Applications held in Ponta Delgada - Azores, from July 4-8, 2011 in honor of Professor Ravi P.
This book is mainly devoted to finite difference numerical methods for solving partial differential equations (PDEs) models of pricing a wide variety of financial derivative securities.
Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics.
Sergei Kuznetsov is one of the top experts on measure valued branching processes (also known as "e;superprocesses"e;) and their connection to nonlinear partial di?
Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012 is a collection of the best articles presented at "e;Applied Mathematics and Approximation Theory 2012,"e; an international conference held in Ankara, Turkey, May 17-20, 2012.
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area.
The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations.
This collection of original articles and surveys, emerging from a 2011 conference in Bertinoro, Italy, addresses recent advances in linear and nonlinear aspects of the theory of partial differential equations (PDEs).
The theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence.