Interactive Operations Research with Maple: Methods and Models has two ob- jectives: to provide an accelerated introduction to the computer algebra system Maple and, more importantly, to demonstrate Maple's usefulness in modeling and solving a wide range of operations research (OR) problems.
Nonlinear partial differential equations has become one of the main tools of mod- ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of functional analysis derived its inspiration from the study of linear pdes.
Now in new trade paper editions, these classic biographies of two of the greatest 20th Century mathematicians are being released under the Copernicus imprint.
Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep math- ematical questions posed by such equations and the important role they play in many areas of science and technology.
For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE.
First year, undergraduate, mathematics students in Japan have for many years had the opportunity of a unique experience---an introduction, at an elementary level, to some very advanced ideas in mathematics from one of the leading mathematicians of the world.
Elliptic boundary problems have enjoyed interest recently, espe- cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary.
During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics.
On becoming familiar with difference equations and their close re- lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations.
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences.
Covers recent advances in the field of nonlinear functional analysis and its applications to nonlinear pdes and odes, with particular emphasis on variational and topological methods.
This monograph is intended to provide a comprehensive description of the rela- tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain.
Given the explosion of interest in mathematical methods for solving problems in finance and trading, a great deal of research and development is taking place in universities, large brokerage firms, and in the supporting trading software industry.
This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology).
For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person.
This book is a self-contained introduction to real analysis assuming only basic notions on limits of sequences in ]RN, manipulations of series, their convergence criteria, advanced differential calculus, and basic algebra of sets.
Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdos, Fejer, Stieltjes, and Turan.
This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension.
This two-volume textbook provides comprehensive coverage of partial differential equations, spanning elliptic, parabolic, and hyperbolic types in two and several variables.
This two-volume textbook provides comprehensive coverage of partial differential equations, spanning elliptic, parabolic, and hyperbolic types in two and several variables.
The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions.
Delay Ordinary and Partial Differential Equations is devoted to linear and nonlinear ordinary and partial differential equations with constant and variable delay.