This volume forms a valuable source of information on recent developments in research in combinatorics, with special regard to the geometric point of view.
Automata Theory is part of computability theory which covers problems in computer systems, software, activity of nervous systems (neural networks), and processes of live organisms development.
Combinatorics has not been an established branch of mathematics for very long: the last quarter of a century has seen an explosive growth in the subject.
Haim Hanani pioneered the techniques for constructing designs and the theory of pairwise balanced designs, leading directly to Wilson's Existence Theorem.
This monograph is based on a series of lectures given by the author at the first Advanced Research Institute on Discrete Applied Mathematics, held at Rutgers University.
Recent developments in all aspects of combinatorial and incidence geometry are covered in this volume, including their links with the foundations of geometry, graph theory and algebraic structures, and the applications to coding theory and computer science.
This volume presents four machine-independent theories of computational complexity, which have been chosen for their intrinsic importance and practical relevance.
Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems.
This textbook offers a geometric perspective on special relativity, bridging Euclidean space, hyperbolic space, and Einstein's spacetime in one accessible, self-contained volume.
The expanded and updated 2nd edition of this classic text offers the reader a comprehensive introduction to the concepts of logic functions and equations and their applications across computer science.
Over the past fifty years, the development of chaotic dynamical systems theory and its subsequent wide applicability in science and technology has been an extremely important achievement of modern mathematics.
This undergraduate textbook provides a comprehensive treatment of Euclidean and transformational geometries, supplemented by substantial discussions of topics from various non-Euclidean and less commonly taught geometries, making it ideal for both mathematics majors and pre-service teachers.
This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations.
ACMES (Algorithms and Complexity in Mathematics, Epistemology, and Science) is a multidisciplinary conference series that focuses on epistemological and mathematical issues relating to computation in modern science.
Computability, Complexity, and Languages is an introductory text that covers the key areas of computer science, including recursive function theory, formal languages, and automata.
Stochastic local search (SLS) algorithms are among the most prominent and successful techniques for solving computationally difficult problems in many areas of computer science and operations research, including propositional satisfiability, constraint satisfaction, routing, and scheduling.
In this book we generate graphic images using the software Mathematica thus providing a gentle and enjoyable introduction to this rather technical software and its graphic capabilities.