Fields Medal-winning mathematician John Milnor's classic treatment of singular points of complex hypersurfacesOne of the greatest mathematicians of the twentieth century, John Milnor has made fundamental discoveries in diverse areas of mathematics, from topology and dynamical systems to algebraic K-theory.
A Course in Modern Geometries is designed for a junior-senior level course for mathematics majors, including those who plan to teach in secondary school.
Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones.
This handsome book is aimed towards those with an intermediate skill level, but the origami basics included at the start of the book make it accessible to beginners.
47 brauchen nur den Nenner n so groß zu wählen, daß das Intervall [0, IJn] kleiner wird als das fragliche Intervall [A, B], dann muß mindestens einer der Brüche m/n innerhalb des Intervalls liegen.
Based on the Simons Symposia held in 2015, the proceedings in this volume focus on rational curves on higher-dimensional algebraic varieties and applications of the theory of curves to arithmetic problems.
The main goal of the two authors is to help undergraduate students understand the concepts and ideas of combinatorics, an important realm of mathematics, and to enable them to ultimately achieve excellence in this field.
Whilst the greatest effort has been made to ensure the quality of this text, due to the historical nature of this content, in some rare cases there may be minor issues with legibility.
This monograph provides a comprehensive introduction to the theory of complex normal surface singularities, with a special emphasis on connections to low-dimensional topology.
Interest in the study of geometry is currently enjoying a resurgence-understandably so, as the study of curves was once the playground of some very great mathematicians.
The problem of quark confinement is one of the classic unsolved problems of particle physics and is fundamental to our understanding of the physics of the strong interaction and the behaviour of non-Abelian gauge theories in general.
The aim of Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties is to discuss primarily about different kinds of summable spaces, compute their duals and then characterize several matrix classes transforming one summable space into other.
Singular algebraic curves have been in the focus of study in algebraic geometry from the very beginning, and till now remain a subject of an active research related to many modern developments in algebraic geometry, symplectic geometry, and tropical geometry.
Over the past 20 years, the theory of groups - in particular simple groups, finite and algebraic - has influenced a number of diverse areas of mathematics.
Analytical Geometry contains various topics in analytical geometry, which are required for the advanced and scholarship levels in mathematics of the various Examining Boards.
This book provides an up-to-date presentation of homogeneous pseudo-Riemannian structures, an essential tool in the study of pseudo-Riemannian homogeneous spaces.
This proceedings presents the latest research materials done on group theory from geometrical viewpoint in particular Gromov's theory of hyperbolic groups, Coxeter groups, Tits buildings and actions on real trees.