This book highlights a number of recent research advances in the field of symplectic and contact geometry and topology, and related areas in low-dimensional topology.
The focus of this book and its geometric notions is on real vector spaces X that are finite or infinite inner product spaces of arbitrary dimension greater than or equal to 2.
In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory.
Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations.
Edited in collaboration with the Grassmann Research Group, this book contains many important articles delivered at the ICM 2014 Satellite Conference and the 18th International Workshop on Real and Complex Submanifolds, which was held at the National Institute for Mathematical Sciences, Daejeon, Republic of Korea, August 10-12, 2014.
Kahler Metric and Moduli Spaces, Volume 18-II covers survey notes from the expository lectures given during the seminars in the academic year of 1987 for graduate students and mature mathematicians who were not experts on the topics considered during the sessions about partial differential equations.
This book presents original research applying mathematics to musical rhythm, with a focus on computational methods, theoretical approaches, analysis of rhythm in folk and global music traditions, syncopation, and maximal evenness.
A no-nonsense practical guide to geometry, providing concise summaries, clear model examples, and plenty of practice, making this workbook the ideal complement to class study or self-study, preparation for exams or a brush-up on rusty skills.
Appliies variational methods and critical point theory on infinite dimenstional manifolds to some problems in Lorentzian geometry which have a variational nature, such as existence and multiplicity results on geodesics and relations between such geodesics and the topology of the manifold.
»Philosophie der Mathematik« wird in diesem Buch verstanden als ein Bemühen um die Klärung solcher Fragen, die die Mathematik selber aufwirft, aber mit ihren eigenen Methoden nicht beantworten kann.
Originally published in 1971 The Geometry of Environment is a fusion of art and mathematics introducing stimulating ideas from modern geometry, using illustrations from architecture and design.
This textbook provides a thorough introduction to the differential geometry of parametrized curves and surfaces, along with a wealth of applications to specific architectural elements.
This book is an introduction to hyperbolic and differential geometry that provides material in the early chapters that can serve as a textbook for a standard upper division course on hyperbolic geometry.
This monograph provides a comprehensive introduction to the theory of complex normal surface singularities, with a special emphasis on connections to low-dimensional topology.
The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot TheoryAn Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research.
This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability.
This book introduces path-breaking applications of concepts from mathematical topology to music-theory topics including harmony, chord progressions, rhythm, and music classification.
Ever since Lorensen and Cline published their paper on the Marching Cubes algorithm, isosurfaces have been a standard technique for the visualization of 3D volumetric data.
Eine verständliche, konzise und immer flüssige Einführung in die Algebra, die insbesondere durch ihre sorgfältige didaktische Aufbereitung bei vielen Studenten Freunde finden wird.
This is a collection of articles, many written by people who worked with Mandelbrot, memorializing the remarkable breadth and depth of his work in science and the arts.
Mathematical Analysis: Theory and Applications provides an overview of the most up-to-date developments in the field, presenting original contributions and surveys from a spectrum of respected academics.
This book includes 58 selected articles that highlight the major contributions of Professor Radha Charan Gupta-a doyen of history of mathematics-written on a variety of important topics pertaining to mathematics and astronomy in India.