Cut through the noise and get real results with a step-by-step approach to understanding supervised learning algorithmsKey FeaturesIdeal for those getting started with machine learning for the first timeA step-by-step machine learning tutorial with exercises and activities that help build key skillsStructured to let you progress at your own pace, on your own termsUse your physical print copy to redeem free access to the online interactive editionBook DescriptionYou already know you want to understand supervised learning, and a smarter way to do that is to learn by doing.
Neural Nets and Chaotic Carriers develops rational principles for the design of associative memories, with a view to applying these principles to models with irregularly oscillatory operation so evident in biological neural systems, and necessitated by the meaninglessness of absolute signal levels.
Explore various approaches to organize and extract useful text from unstructured data using JavaKey FeaturesUse deep learning and NLP techniques in Java to discover hidden insights in textWork with popular Java libraries such as CoreNLP, OpenNLP, and MalletExplore machine translation, identifying parts of speech, and topic modelingBook DescriptionNatural Language Processing (NLP) allows you to take any sentence and identify patterns, special names, company names, and more.
Create end-to-end systems that can power robots with artificial vision and deep learning techniquesKey FeaturesStudy ROS, the main development framework for robotics, in detailLearn all about convolutional neural networks, recurrent neural networks, and roboticsCreate a chatbot to interact with the robotBook DescriptionArtificial Vision and Language Processing for Robotics begins by discussing the theory behind robots.
Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classification, transfer learning, and natural language processing.
Explore a diverse set of meta-learning algorithms and techniques to enable human-like cognition for your machine learning models using various Python frameworksKey FeaturesUnderstand the foundations of meta learning algorithmsExplore practical examples to explore various one-shot learning algorithms with its applications in TensorFlowMaster state of the art meta learning algorithms like MAML, reptile, meta SGDBook DescriptionMeta learning is an exciting research trend in machine learning, which enables a model to understand the learning process.
Delve into the world of real-world financial applications using deep learning, artificial intelligence, and production-grade data feeds and technology with PythonKey FeaturesUnderstand how to obtain financial data via Quandl or internal systemsAutomate commercial banking using artificial intelligence and Python programsImplement various artificial intelligence models to make personal banking easyBook DescriptionRemodeling your outlook on banking begins with keeping up to date with the latest and most effective approaches, such as artificial intelligence (AI).
Start with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guideKey FeaturesUse TensorFlow to write reinforcement learning agents for performing challenging tasksLearn how to solve finite Markov decision problemsTrain models to understand popular video games like BreakoutBook DescriptionVarious intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome.
Design and use machine learning models for music generation using Magenta and make them interact with existing music creation toolsKey FeaturesLearn how machine learning, deep learning, and reinforcement learning are used in music generationGenerate new content by manipulating the source data using Magenta utilities, and train machine learning models with itExplore various Magenta projects such as Magenta Studio, MusicVAE, and NSynthBook DescriptionThe importance of machine learning (ML) in art is growing at a rapid pace due to recent advancements in the field, and Magenta is at the forefront of this innovation.
Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practicesKey FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook DescriptionReinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents.
Explore TensorFlow's capabilities to perform efficient deep learning on imagesKey FeaturesDiscover image processing for machine visionBuild an effective image classification system using the power of CNNsLeverage TensorFlow's capabilities to perform efficient deep learningBook DescriptionTensorFlow is Google's popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks.
Unleash the power of unsupervised machine learning in Hidden Markov Models using TensorFlow, pgmpy, and hmmlearnKey FeaturesBuild a variety of Hidden Markov Models (HMM)Create and apply models to any sequence of data to analyze, predict, and extract valuable insightsUse natural language processing (NLP) techniques and 2D-HMM model for image segmentationBook DescriptionHidden Markov Model (HMM) is a statistical model based on the Markov chain concept.
A deep and detailed dive into the key aspects and challenges of machine learning interpretability, complete with the know-how on how to overcome and leverage them to build fairer, safer, and more reliable modelsKey FeaturesLearn how to extract easy-to-understand insights from any machine learning modelBecome well-versed with interpretability techniques to build fairer, safer, and more reliable modelsMitigate risks in AI systems before they have broader implications by learning how to debug black-box modelsBook DescriptionDo you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation?
Get to grips with building robust XGBoost models using Python and scikit-learn for deploymentKey FeaturesGet up and running with machine learning and understand how to boost models with XGBoost in no timeBuild real-world machine learning pipelines and fine-tune hyperparameters to achieve optimal resultsDiscover tips and tricks and gain innovative insights from XGBoost Kaggle winnersBook DescriptionXGBoost is an industry-proven, open-source software library that provides a gradient boosting framework for scaling billions of data points quickly and efficiently.
Get a head start in the world of AI and deep learning by developing your skills with PyTorchKey FeaturesLearn how to define your own network architecture in deep learningImplement helpful methods to create and train a model using PyTorch syntaxDiscover how intelligent applications using features like image recognition and speech recognition really process your dataBook DescriptionWant to get to grips with one of the most popular machine learning libraries for deep learning?
Increase the performance of various neural network architectures using NEAT, HyperNEAT, ES-HyperNEAT, Novelty Search, SAFE, and deep neuroevolutionKey FeaturesImplement neuroevolution algorithms to improve the performance of neural network architecturesUnderstand evolutionary algorithms and neuroevolution methods with real-world examplesLearn essential neuroevolution concepts and how they are used in domains including games, robotics, and simulationsBook DescriptionNeuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes.
In today's data-driven world, more sophisticated algorithms for data processing are in high demand, mainly when the data cannot be handled with the help of traditional techniques.
In today's data-driven world, more sophisticated algorithms for data processing are in high demand, mainly when the data cannot be handled with the help of traditional techniques.
Create end-to-end systems that can power robots with artificial vision and deep learning techniquesKey FeaturesStudy ROS, the main development framework for robotics, in detailLearn all about convolutional neural networks, recurrent neural networks, and roboticsCreate a chatbot to interact with the robotBook DescriptionArtificial Vision and Language Processing for Robotics begins by discussing the theory behind robots.
Learn the ropes of supervised machine learning with R by studying popular real-world use-cases, and understand how it drives object detection in driver less cars, customer churn, and loan default prediction.
Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problemsKey FeaturesGain a comprehensive overview of different machine learning techniquesExplore various methods for selecting a particular algorithmImplement a machine learning project from problem definition through to the final modelBook DescriptionWith huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed.
This quick start guide will bring the readers to a basic level of understanding when it comes to the Machine Learning (ML) development lifecycle, will introduce Go ML libraries and then will exemplify common ML methods such as Classification, Regression, and ClusteringKey FeaturesYour handy guide to building machine learning workflows in Go for real-world scenariosBuild predictive models using the popular supervised and unsupervised machine learning techniquesLearn all about deployment strategies and take your ML application from prototype to production readyBook DescriptionMachine learning is an essential part of today's data-driven world and is extensively used across industries, including financial forecasting, robotics, and web technology.
Visualize and build deep learning models with 3D data using PyTorch3D and other Python frameworks to conquer real-world application challenges with easeKey FeaturesUnderstand 3D data processing with rendering, PyTorch optimization, and heterogeneous batchingImplement differentiable rendering concepts with practical examplesDiscover how you can ease your work with the latest 3D deep learning techniques using PyTorch3DBook DescriptionWith this hands-on guide to 3D deep learning, developers working with 3D computer vision will be able to put their knowledge to work and get up and running in no time.
This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework.
Fun and exciting projects to learn what artificial minds can createKey FeaturesCode examples are in TensorFlow 2, which make it easy for PyTorch users to follow alongLook inside the most famous deep generative models, from GPT to MuseGANLearn to build and adapt your own models in TensorFlow 2.
Get started with TensorFlow fundamentals to build and train deep learning models with real-world data, practical exercises, and challenging activitiesKey FeaturesUnderstand the fundamentals of tensors, neural networks, and deep learningDiscover how to implement and fine-tune deep learning models for real-world datasetsBuild your experience and confidence with hands-on exercises and activitiesBook DescriptionGetting to grips with tensors, deep learning, and neural networks can be intimidating and confusing for anyone, no matter their experience level.
One-stop solution for NLP practitioners, ML developers, and data scientists to build effective NLP systems that can perform real-world complicated tasksKey FeaturesApply deep learning algorithms and techniques such as BiLSTMS, CRFs, BPE and more using TensorFlow 2Explore applications like text generation, summarization, weakly supervised labelling and moreRead cutting edge material with seminal papers provided in the GitHub repository with full working codeBook DescriptionRecently, there have been tremendous advances in NLP, and we are now moving from research labs into practical applications.
With knowledge and information shared by experts, take your first steps towards creating scalable AI algorithms and solutions in Python, through practical exercises and engaging activitiesKey FeaturesLearn about AI and ML algorithms from the perspective of a seasoned data scientistGet practical experience in ML algorithms, such as regression, tree algorithms, clustering, and moreDesign neural networks that emulate the human brainBook DescriptionYou already know that artificial intelligence (AI) and machine learning (ML) are present in many of the tools you use in your daily routine.
A deep and detailed dive into the key aspects and challenges of machine learning interpretability, complete with the know-how on how to overcome and leverage them to build fairer, safer, and more reliable modelsKey FeaturesLearn how to extract easy-to-understand insights from any machine learning modelBecome well-versed with interpretability techniques to build fairer, safer, and more reliable modelsMitigate risks in AI systems before they have broader implications by learning how to debug black-box modelsBook DescriptionDo you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation?
Gain expertise in advanced deep learning domains such as neural networks, meta-learning, graph neural networks, and memory augmented neural networks using the Python ecosystemKey FeaturesGet to grips with building faster and more robust deep learning architecturesInvestigate and train convolutional neural network (CNN) models with GPU-accelerated libraries such as TensorFlow and PyTorchApply deep neural networks (DNNs) to computer vision problems, NLP, and GANsBook DescriptionIn order to build robust deep learning systems, you'll need to understand everything from how neural networks work to training CNN models.
Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problemsKey FeaturesMaster supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and moreBuild, deploy, and scale end-to-end deep neural network models in a production environmentBook DescriptionThis Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms.
Create AI applications in Python and lay the foundations for your career in data scienceKey FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook DescriptionMachine learning and neural networks are pillars on which you can build intelligent applications.
Build smarter applications with AI capabilities using Microsoft Cognitive Services APIs without much hassleKey FeaturesExplore the Cognitive Services APIs for building machine learning applicationsBuild applications with computer vision, speech recognition, and language processing capabilitiesLearn to implement human-like cognitive intelligence for your applicationsBook DescriptionMicrosoft Cognitive Services is a set of APIs for adding intelligence to your application and leverage the power of AI to solve any business problem using the cognitive capabilities.
Learn how to train popular deep learning architectures such as autoencoders, convolutional and recurrent neural networks while discovering how you can use deep learning models in your software applications with Microsoft Cognitive ToolkitKey FeaturesUnderstand the fundamentals of Microsoft Cognitive Toolkit and set up the development environment Train different types of neural networks using Cognitive Toolkit and deploy it to productionEvaluate the performance of your models and improve your deep learning skillsBook DescriptionCognitive Toolkit is a very popular and recently open sourced deep learning toolkit by Microsoft.