This research monograph gives a detailed account of a theory which is mainly concerned with certain classes of degenerate differential operators, Markov semigroups and approximation processes.
The conventional numerical methods when applied to multidimensional problems suffer from the so-called "e;curse of dimensionality"e;, that cannot be eliminated by using parallel architectures and high performance computing.
The book is the first systematical treatment of the theory of finite elements in Archimedean vector lattices and contains the results known on this topic up to the year 2013.
Scientific Computing for Scientists and Engineers is designed to teach undergraduate students relevant numerical methods and required fundamentals in scientific computing.
This monograph aspires to lay the foundations of a new scientific discipline, demoeconomics, representing the synthesis of demography and spatial economics.
Intelligent Materials and Structures provides exceptional insights into designing intelligent materials and structures for special applications in engineering.
Presenting current approaches in observational and computational seismology, this book introduces advanced methods and techniques by means of case studies in earthquake research.
The book gives a systematical presentation of stochastic approximation methods for models of American-type options with general pay-off functions for discrete time Markov price processes.
This book is summarizing the results of the workshop "e;Uniform Distribution and Quasi-Monte Carlo Methods"e; of the RICAM Special Semester on "e;Applications of Algebra and Number Theory"e; in October 2013.
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid.
This is the proceedings of the workshop on recent developments in ergodic theory and dynamical systems on March 2011 and March 2012 at the University of North Carolina at Chapel Hill.
The book presents advanced stochastic models and simulation methods for random flows and transport of particles by turbulent velocity fields and flows in porous media.
Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters.
This monograph examines magnetization dynamics at elevated temperatures which can be described by the stochastic Landau-Lifshitz-Gilbert equation (SLLG).
The book provides a unique collection of in-depth mathematical, statistical, and modeling methods and techniques for life sciences, as well as their applications in a number of areas within life sciences.
This book deals with the general topic "e;Numerical solution of partial differential equations (PDEs)"e; with a focus on adaptivity of discretizations in space and time.
This book is the third volume of three volume series recording the "e;Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"e; taking place in Linz, Austria, October 3-7, 2011.
This monograph is a valuable contribution to the highly topical and extremly productive field of regularisation methods for inverse and ill-posed problems.