Das vorliegende Brich über Funktionen einer reellen Veränderlichen ist der erste Teil einer dreibändigen Darstellung der Differential- und Integralrechnung.
Integration is the sixth and last of the books that form the core of the Bourbaki series; it draws abundantly on the preceding five Books, especially General Topology and Topological Vector Spaces, making it a culmination of the core six.
The present book deals with the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations, which are currently used in many fields of engineering mechanics with applied character, like elasticity, plasticity, thermoelastoplasticity, viscoelasticity, viscoplasticity, fracture mechanics, structural analysis, fluid mechanics, aerodynamics and elastodynamics.
Das Buch ist eine kompakte, leicht lesbare Einführung in die Maß- und Integrationstheorie samt Wahrscheinlichkeitstheorie, in der auch auf den für das Verständnis wichtigen Bezug zur klassischen Analysis, etwa in Abschnitten über Funktionen von beschränkter Variation oder dem Hauptsatz der Differential- und Integralrechnung eingegangen wird.
Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes.
Die Analysis ist ein klassisches Thema, aber die Art der Vermittlung wandelt sich: Einerseits wegen der neuen Bachelorstudiengänge, andererseits wegen des geringeren Wissensstands der Studienanfänger.
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind.
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind.
This innovative textbook bridges the gap between undergraduate analysis and graduate measure theory by guiding students from the classical foundations of analysis to more modern topics like metric spaces and Lebesgue integration.
This innovative textbook bridges the gap between undergraduate analysis and graduate measure theory by guiding students from the classical foundations of analysis to more modern topics like metric spaces and Lebesgue integration.
Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis.
This book is devoted to the mathematical analysis of the numerical solution of boundary integral equations treating boundary value, transmission and contact problems arising in elasticity, acoustic and electromagnetic scattering.
This book presents exercises and problems in the mathematical methods of physics with the aim of offering undergraduate students an alternative way to explore and fully understand the mathematical notions on which modern physics is based.
Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems.
This book features a collection of recent findings in Applied Real and Complex Analysis that were presented at the 3rd International Conference "e;Boundary Value Problems, Functional Equations and Applications"e; (BAF-3), held in Rzeszow, Poland on 20-23 April 2016.
This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences.
This comprehensive treatment of multivariable calculus focuses on the numerous tools that MATLAB(R) brings to the subject, as it presents introductions to geometry, mathematical physics, and kinematics.
This book provides a selection of reports and survey articles on the latest research in the area of single and multivariable operator theory and related fields.
Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings.