Although data engineering is a multi-disciplinary field with applications in control, decision theory, and the emerging hot area of bioinformatics, there are no books on the market that make the subject accessible to non-experts.
This volume presents some exciting new developments occurring on the interface between set theory and computability as well as their applications in algebra, analysis and topology.
The model theory of fields is a fascinating subject stretching from Tarski's work on the decidability of the theories of the real and complex fields to Hrushovksi's recent proof of the Mordell-Lang conjecture for function fields.
Logicism, as put forward by Bertrand Russell, was predicated on a belief that all of mathematics can be deduced from a very small number of fundamental logical principles.
The Language of Symmetry is a re-assessment of the structure and reach of symmetry, by an interdisciplinary group of specialists from the arts, humanities, and sciences at Oxford University.
Reverse Mathematics is a program of research in the foundations of mathematics, motivated by the foundational questions of what are appropriate axioms for mathematics, and what are the logical strengths of particular axioms and particular theorems.
Based on lax-algebraic and categorical methods, Monoidal Topology provides a unified theory for metric and topological structures with far-reaching applications.
Classical and Fuzzy Concepts in Mathematical Logic and Applications provides a broad, thorough coverage of the fundamentals of two-valued logic, multivalued logic, and fuzzy logic.
This comprehensive introductory textbook is designed for undergraduate mathematics students seeking to gain a strong understanding of fuzzy sets and relations.
This textbook will continue to be the best suitable textbook written specifically for a first course on probability theory and designed for industrial engineering and operations management students.
Algebra & Geometry: An Introduction to University Mathematics, Second Edition provides a bridge between high school and undergraduate mathematics courses on algebra and geometry.
Designed for undergraduate students of set theory, Classic Set Theory presents a modern perspective of the classic work of Georg Cantor and Richard Dedekin and their immediate successors.
The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject.
This book introduces the basic concepts of set theory, measure theory, the axiomatic theory of probability, random variables and multidimensional random variables, functions of random variables, convergence theorems, laws of large numbers, and fundamental inequalities.
This book makes a significant inroad into the unexpectedly difficult question of existence of Frechet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces.
This book offers a gentle introduction to type-2 fuzzy sets and, in particular, interval type-2 fuzzy sets and their application in biological modeling.
This unique textbook, in contrast to a standard logic text, provides the reader with a logic that actually can be used in practice to express and reason about mathematical ideas.
This volume presents the proceedings of the 2000 European Summer Meeting of the Association for Symbolic Logic, marking one hundred years since Hilbert''s famous lecture.
This Festschrift includes papers presented to honour Solomon Feferman on his seventieth birthday, reflecting his broad interests and his approach to foundational research.
This book covers a broad range of up-to-date issues in non-classical logic that are of interest not only to philosophical and mathematical logicians but also to computer scientists and researchers in artificial intelligence.