With knowledge and information shared by experts, take your first steps towards creating scalable AI algorithms and solutions in Python, through practical exercises and engaging activitiesKey FeaturesLearn about AI and ML algorithms from the perspective of a seasoned data scientistGet practical experience in ML algorithms, such as regression, tree algorithms, clustering, and moreDesign neural networks that emulate the human brainBook DescriptionYou already know that artificial intelligence (AI) and machine learning (ML) are present in many of the tools you use in your daily routine.
Theoretical Mechanics of Biological Neural Networks presents an extensive and coherent discusson and formulation of the generation and integration of neuroelectric signals in single neurons.
Artificial Intelligence in Heat Transfer shows how artificial intelligence (AI) tools and techniques, such as artificial neural networks, machine learning algorithms, genetic algorithms, etc.
Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones).
The resurgence of artificial intelligence has been fueled by the availability of the present generation of high-performance computational tools and techniques.
Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence.
Transform your machine learning projects into successful deployments with this practical guide on how to build and scale solutions that solve real-world problemsIncludes a new chapter on generative AI and large language models (LLMs) and building a pipeline that leverages LLMs using LangChainKey FeaturesThis second edition delves deeper into key machine learning topics, CI/CD, and system designExplore core MLOps practices, such as model management and performance monitoringBuild end-to-end examples of deployable ML microservices and pipelines using AWS and open-source toolsBook DescriptionThe Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems.
Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devicesKey FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook DescriptionDeep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras.
The book emphasizes the role of data in driving healthcare transformation, providing readers with a roadmap for understanding and effectively implementing data-driven innovations.
Discover the use of graph networks to develop a new approach to data science using theoretical and practical methods with this expert guide using Python, printed in colorKey FeaturesCreate networks using data points and informationLearn to visualize and analyze networks to better understand communitiesExplore the use of network data in both - supervised and unsupervised machine learning projectsPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionNetwork analysis is often taught with tiny or toy data sets, leaving you with a limited scope of learning and practical usage.
A step-by-step introduction to modeling, training, and forecasting using wavelet networks Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification presents the statistical model identification framework that is needed to successfully apply wavelet networks as well as extensive comparisons of alternate methods.
Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics.
As multicriteria decision-making (MCDM) continues to grow and evolve, machine learning (ML) techniques have become increasingly important in finding efficient and effective solutions to complex problems.
Autonomous Driving and Advanced Driver-Assistance Systems (ADAS): Applications, Development, Legal Issues, and Testing outlines the latest research related to autonomous cars and advanced driver-assistance systems, including the development, testing, and verification for real-time situations of sensor fusion, sensor placement, control algorithms, and computer vision.
Recent results and ongoing research in Artificial Intelligence are described in this book, with emphasis on fundamental questions in several key areas: machine learning, neural networks, automated reasoning, natural language processing, and logic methods in AI.
Build and train scalable neural network models on various platforms by leveraging the power of Caffe2Key FeaturesMigrate models trained with other deep learning frameworks on Caffe2Integrate Caffe2 with Android or iOS and implement deep learning models for mobile devicesLeverage the distributed capabilities of Caffe2 to build models that scale easilyBook DescriptionCaffe2 is a popular deep learning library used for fast and scalable training and inference of deep learning models on various platforms.
Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence.
AI in and for Africa: A Humanistic Perspective explores the convoluted intersection of artificial intelligence (AI) with Africa's unique socio-economic realities.
Statistical Learning using Neural Networks: A Guide for Statisticians and Data Scientists with Python introduces artificial neural networks starting from the basics and increasingly demanding more effort from readers, who can learn the theory and its applications in statistical methods with concrete Python code examples.
A compact guide to mastering TensorFlow 2, covering essential APIs, datasets, and practical applications for efficient machine learning and deep learning projects.
Enhance your data science skills with this updated edition featuring new chapters on LLMs, temporal graphs, and updated examples with modern frameworks, including PyTorch Geometric, and DGLKey FeaturesMaster new graph ML techniques through updated examples using PyTorch Geometric and Deep Graph Library (DGL)Explore GML frameworks and their main characteristicsLeverage LLMs for machine learning on graphs and learn about temporal learningPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionGraph Machine Learning, Second Edition builds on its predecessor's success, delivering the latest tools and techniques for this rapidly evolving field.
Get into the world of smart data security using machine learning algorithms and Python librariesKey FeaturesLearn machine learning algorithms and cybersecurity fundamentalsAutomate your daily workflow by applying use cases to many facets of securityImplement smart machine learning solutions to detect various cybersecurity problemsBook DescriptionCyber threats today are one of the costliest losses that an organization can face.
Build a strong foundation of machine learning algorithms in 7 daysKey FeaturesUse Python and its wide array of machine learning libraries to build predictive models Learn the basics of the 7 most widely used machine learning algorithms within a weekKnow when and where to apply data science algorithms using this guideBook DescriptionMachine learning applications are highly automated and self-modifying, and continue to improve over time with minimal human intervention, as they learn from the trained data.
Explore TensorFlow's capabilities to perform efficient deep learning on imagesKey FeaturesDiscover image processing for machine visionBuild an effective image classification system using the power of CNNsLeverage TensorFlow's capabilities to perform efficient deep learningBook DescriptionTensorFlow is Google's popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks.
This book comprehensively explores the latest technological advancements in healthcare, with a particular focus on the application of cutting-edge technologies, such as artificial intelligence (AI), computer vision, and robotics.
After many years during which it languished in relative obscurity, in remote classrooms of computer science departments and in small prototype projects for tech companies, artificial intelligence (AI) is now a searingly hot topic across the media.
An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithmsKey FeaturesCovers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithmLearn how to implement algorithms with code by following examples with line-by-line explanationsExplore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrationsBook DescriptionWith significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit.
Correlative Learning: A Basis for Brain and Adaptive Systems provides a bridge between three disciplines: computational neuroscience, neural networks, and signal processing.
The Internet of Things (IoT) concept is defined as a flexible and futuristic network where all the different types of devices and smart objects can become seamlessly connected to each other and can actively participate in all types of processes which are happening around us.