Algebraic Structures in Natural Language addresses a central problem in cognitive science concerning the learning procedures through which humans acquire and represent natural language.
Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystemKey FeaturesBuild deep learning models with transfer learning principles in Pythonimplement transfer learning to solve real-world research problemsPerform complex operations such as image captioning neural style transferBook DescriptionTransfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems.
The application of deep learning methods to problems in natural language processing has generated significant progress across a wide range of natural language processing tasks.
Fun and exciting projects to learn what artificial minds can createKey FeaturesCode examples are in TensorFlow 2, which make it easy for PyTorch users to follow alongLook inside the most famous deep generative models, from GPT to MuseGANLearn to build and adapt your own models in TensorFlow 2.
Metaheuristics for Resource Deployment under Uncertainty in Complex Systems analyzes how to set locations for the deployment of resources to incur the best performance at the lowest cost.
Cut through the noise and get real results with a step-by-step approach to understanding supervised learning algorithmsKey FeaturesIdeal for those getting started with machine learning for the first timeA step-by-step machine learning tutorial with exercises and activities that help build key skillsStructured to let you progress at your own pace, on your own termsUse your physical print copy to redeem free access to the online interactive editionBook DescriptionYou already know you want to understand supervised learning, and a smarter way to do that is to learn by doing.
Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practicesKey FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook DescriptionReinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents.
This book provides a comprehensive analysis of the tools and techniques used today for designing and modeling of efficient and robust swarm-intelligence based systems: highly (or fully) decentralized, semi-autonomous, highly-scalable infrastructures in various real-life scenarios.
Grasp machine learning concepts, techniques, and algorithms with the help of real-world examples using Python libraries such as TensorFlow and scikit-learnKey FeaturesExploit the power of Python to explore the world of data mining and data analyticsDiscover machine learning algorithms to solve complex challenges faced by data scientists todayUse Python libraries such as TensorFlow and Keras to create smart cognitive actions for your projectsBook DescriptionThe surge in interest in machine learning (ML) is due to the fact that it revolutionizes automation by learning patterns in data and using them to make predictions and decisions.
This quick start guide will bring the readers to a basic level of understanding when it comes to the Machine Learning (ML) development lifecycle, will introduce Go ML libraries and then will exemplify common ML methods such as Classification, Regression, and ClusteringKey FeaturesYour handy guide to building machine learning workflows in Go for real-world scenariosBuild predictive models using the popular supervised and unsupervised machine learning techniquesLearn all about deployment strategies and take your ML application from prototype to production readyBook DescriptionMachine learning is an essential part of today's data-driven world and is extensively used across industries, including financial forecasting, robotics, and web technology.
Master GenAI techniques to create images and text using variational autoencoders (VAEs), generative adversarial networks (GANs), LSTMs, and large language models (LLMs)Key FeaturesImplement real-world applications of LLMs and generative AIFine-tune models with PEFT and LoRA to speed up trainingExpand your LLM toolbox with Retrieval Augmented Generation (RAG) techniques, LangChain, and LlamaIndexPurchase of the print or Kindle book includes a free eBook in PDF formatBook DescriptionBecome an expert in Generative AI through immersive, hands-on projects that leverage today's most powerful models for Natural Language Processing (NLP) and computer vision.
Modelling Invasive Alien Plant Species: Fuzzy Based Uncertainty presents the application of different fuzzy set theory techniques in developing risk assessment models for invasive plant species- those whose introduction and spread outside their natural range threatens local biodiversity.
Get more from your data by creating practical machine learning systems with PythonKey FeaturesDevelop your own Python-based machine learning systemDiscover how Python offers multiple algorithms for modern machine learning systemsExplore key Python machine learning libraries to implement in your projectsBook DescriptionMachine learning allows systems to learn things without being explicitly programmed to do so.
Focusing on how visual information is represented, stored and extracted in the human brain, this book uses cognitive neural modeling in order to show how visual information is represented and memorized in the brain.
A guide to advances in machine learning for financial professionals, with working Python codeKey FeaturesExplore advances in machine learning and how to put them to work in financial industriesClear explanation and expert discussion of how machine learning works, with an emphasis on financial applicationsDeep coverage of advanced machine learning approaches including neural networks, GANs, and reinforcement learningBook DescriptionMachine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including in insurance, transactions, and lending.
Implement machine learning, cognitive services, and artificial intelligence solutions by leveraging Azure cloud technologiesKey FeaturesLearn advanced concepts in Azure ML and the Cortana Intelligence Suite architectureExplore ML Server using SQL Server and HDInsight capabilitiesImplement various tools in Azure to build and deploy machine learning modelsBook DescriptionImplementing Machine learning (ML) and Artificial Intelligence (AI) in the cloud had not been possible earlier due to the lack of processing power and storage.
This quick start guide will bring the readers to a basic level of understanding when it comes to the Machine Learning (ML) development lifecycle, will introduce Go ML libraries and then will exemplify common ML methods such as Classification, Regression, and ClusteringKey FeaturesYour handy guide to building machine learning workflows in Go for real-world scenariosBuild predictive models using the popular supervised and unsupervised machine learning techniquesLearn all about deployment strategies and take your ML application from prototype to production readyBook DescriptionMachine learning is an essential part of today's data-driven world and is extensively used across industries, including financial forecasting, robotics, and web technology.
Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlowKey FeaturesUnderstand the fundamental machine learning concepts useful in deep learningLearn the underlying mathematical concepts as you implement deep learning models from scratchExplore easy-to-understand examples and use cases that will help you build a solid foundation in DLBook DescriptionWith information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning.
Leverage the power of reward-based training for your deep learning models with PythonKey FeaturesUnderstand Q-learning algorithms to train neural networks using Markov Decision Process (MDP)Study practical deep reinforcement learning using Q-NetworksExplore state-based unsupervised learning for machine learning modelsBook DescriptionQ-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI).
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.
Learn advanced state-of-the-art deep learning techniques and their applications using popular Python librariesKey FeaturesBuild a strong foundation in neural networks and deep learning with Python librariesExplore advanced deep learning techniques and their applications across computer vision and NLPLearn how a computer can navigate in complex environments with reinforcement learningBook DescriptionWith the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands.
Use Java and Deeplearning4j to build robust, scalable, and highly accurate AI models from scratchKey FeaturesInstall and configure Deeplearning4j to implement deep learning models from scratchExplore recipes for developing, training, and fine-tuning your neural network models in JavaModel neural networks using datasets containing images, text, and time-series dataBook DescriptionJava is one of the most widely used programming languages in the world.
The Self-Organizing Map, or Kohonen Map, is one of the most widely used neural network algorithms, with thousands of applications covered in the literature.
In today's data-driven world, more sophisticated algorithms for data processing are in high demand, mainly when the data cannot be handled with the help of traditional techniques.
Gain practical, recipe-based insights into the world of deep learning using Apache MXNet for flexible and efficient research prototyping, training, and deployment to production.
Explore the world of neural networks by building powerful deep learning models using the R ecosystemKey FeaturesGet to grips with the fundamentals of deep learning and neural networksUse R 3.
Simplify next-generation deep learning by implementing powerful generative models using Python, TensorFlow and KerasKey FeaturesUnderstand the common architecture of different types of GANsTrain, optimize, and deploy GAN applications using TensorFlow and KerasBuild generative models with real-world data sets, including 2D and 3D dataBook DescriptionDeveloping Generative Adversarial Networks (GANs) is a complex task, and it is often hard to find code that is easy to understand.
Python for Scientific Computing and Artificial Intelligence is split into 3 parts: in Section 1, the reader is introduced to the Python programming language and shown how Python can aid in the understanding of advanced High School Mathematics.