Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations.
As more and more engineering departments and companies choose to use Python, this book provides an essential introduction to this open-source, free-to-use language.
As more and more engineering departments and companies choose to use Python, this book provides an essential introduction to this open-source, free-to-use language.
The book features original chapters on sequence spaces involving the idea of ideal convergence, modulus function, multiplier sequences, Riesz mean, Fibonacci difference matrix etc.
The book features original chapters on sequence spaces involving the idea of ideal convergence, modulus function, multiplier sequences, Riesz mean, Fibonacci difference matrix etc.
Partial differential equations (PDEs) describe technological phenomena and processes used for the analysis, design, and modeling of technical products.
Partial differential equations (PDEs) describe technological phenomena and processes used for the analysis, design, and modeling of technical products.
The main aim of this book is to present several results related to functions of unitary operators on complex Hilbert spaces obtained, by the author in a sequence of recent research papers.
The main aim of this book is to present several results related to functions of unitary operators on complex Hilbert spaces obtained, by the author in a sequence of recent research papers.
Foreign Object Debris and Damage in Aviation discusses both biological and non-biological Foreign Object Debris (FOD) and associated Foreign Object Damage (FOD) in aviation.
Foreign Object Debris and Damage in Aviation discusses both biological and non-biological Foreign Object Debris (FOD) and associated Foreign Object Damage (FOD) in aviation.
Numerical Methods for Unsteady Compressible Flow Problems is written to give both mathematicians and engineers an overview of the state of the art in the field, as well as of new developments.
Numerical Methods for Unsteady Compressible Flow Problems is written to give both mathematicians and engineers an overview of the state of the art in the field, as well as of new developments.
This book covers an interdisciplinary approach for understanding mathematical modeling by offering a collection of models, solved problems related to the models, the methodologies employed, and the results using projects and case studies with insight into the operation of substantial real-time systems.
This book covers an interdisciplinary approach for understanding mathematical modeling by offering a collection of models, solved problems related to the models, the methodologies employed, and the results using projects and case studies with insight into the operation of substantial real-time systems.
Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study.
Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study.
This book is aimed at both experts and non-experts with an interest in getting acquainted with sequence spaces, matrix transformations and their applications.
This book is aimed at both experts and non-experts with an interest in getting acquainted with sequence spaces, matrix transformations and their applications.
This book focuses on various aspects of dynamic game theory, presenting state-of-the-art research and serving as a testament to the vitality and growth of the field of dynamic games and their applications.
Over the last 20 years, multiscale methods and wavelets have revolutionized the field of applied mathematics by providing an efficient means of encoding isotropic phenomena.
Revised and updated, this second edition of Walter Gautschi's successful Numerical Analysis explores computational methods for problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others.
An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations.
Algebraic, differential, and integral equations are used in the applied sciences, en- gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time.
This book has evolved from lectures and graduate courses given in Brescia (Italy), Bordeaux and Toulouse (France};' It is intended to serve as an intro- duction to the stability analysis of noncharacteristic multidimensional small viscosity boundary layers developed in (MZl].
In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application.
This book combining wavelets and the world of the spectrum focuses on recent developments in wavelet theory, emphasizing fundamental and relatively timeless techniques that have a geometric and spectral- theoretic flavor.
"e;This is a delightful little paperback which presents a day-by-day transcription of a course taught jointly by Polya and Tarjan at Stanford University.
"e;To this reviewer's knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method.
Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging.
This volume comprises a carefully selected collection of articles emerging from and pertinent to the 2010 CFL-80 conference in Rio de Janeiro, celebrating the 80th anniversary of the Courant-Friedrichs-Lewy (CFL) condition.
Broadly organized around the applications of Fourier analysis, Methods of Applied Mathematics with a MATLAB Overview covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms.
An outgrowth of The Seventh International Conference on Integral Methods in Science and Engineering, this book focuses on applications of integration-based analytic and numerical techniques.
This book examines various mathematical tools-based on generalized collocation methods-to solve nonlinear problems related to partial differential and integro-differential equations.
Enrique Castillo is a leading figure in several mathematical and engineering fields, having contributed seminal work in such areas as statistical modeling, extreme value analysis, multivariate distribution theory, Bayesian networks, neural networks, functional equations, artificial intelligence, linear algebra, optimization methods, numerical methods, reliability engineering, as well as sensitivity analysis and its applications.